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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space _: :
Center and local indus_to actlvely support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a ill-

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including ....

administrative, engineering and science responsibilities. JSC agreed and entered into '--_:

a three-year crop, abOveagreemeni with Lrl:I-ETea_Lake beginning m_y_ I986, to =_==_

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research. : : : : = _ i
_l'he mission Of RICIS is to conduct, coordinate and disseminate research on '_

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of _-_±

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear • .

Lake establishes relationships with other universities and research organizations, !

having common research interests, to provide additional sources of expertise to =_=
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
_ &

research objectives to advance knowledge in the computing and information :__

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC. =.£ :
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ABSTRACT

--w

The development of computer science has produced a vast number of machine architectures,

programming languages, and compiler technologies. The cross product of these three

Characteristics defines the spectrum of previous and present data representation methodologies.

With regard to computer networks, the uniqueness of these methodologies presents an obstacle

when disparate host environments are to be interconnected. Interoperability within a

heterogeneous network relies upon the establishment of data representation commonality.

The International Standards Organization (ISO) is currently developing the Abstract Syntax

Notation One standard (ASN.1) and the Basic Encoding Rules standard (BER) that collectively

address this problem. When used within the Presentation Layer of the Open Systems

Interconnection Reference Model, these two standards provide the data representation

commonality required to facilitate interoperability. This paper describes the details of a compiler

that was built to automate the use of ASN. 1 and BER. From this experience, insights into both

standards are given and potential problems relating to this development effort are discussed.
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1. Network Heterogeneity

The development of computer science has produced a vast number of disparate machine

architectures, programming languages, and compiler technologies. The cross product of these

three characteristics defines the specUum of previous and present data representation

methodologies. Although at one time the uniqueness of each technique provided vendors with a

convenient and desirable means to monopolize their customers, the proliferation of computers

and the increasing maturity of distributed processing have now obscured any of the previous

advantages associated with this incompatibility. Nevertheless, established manufacturers are

unwilling to abandon their investment in their own unique data representation schemes. Thus

when computer networks interconnect these heterogeneous systems, a solution to the problem of

data transfer across _comPadble host environments must be provided.

1.1 Architectural Considerations

As a simple illustration of how hardware architecture influences d_is problem, consider three

different techniques used to represent integer values: sign magnitude, diminished radix

complement (one's complement), and _ complemmt (two's complement). Although most

contemporary architectures now use two's complement, there are architectures currently in use

that do noL t Consequently, if integer data were to be exchanged between a one's complement

machine and a two'scomplementmachine, each computer would have a different interpretation

of the "same" negative values. Other data types also suffer from this representation disparity;,

perhaps the most obvious is floating point numbers.
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To complicatetheseaw.hitectutalconsiderationseven further,characteristicssuch as word

alignment,byteordering,and addressabilitymay alsopresentproblems. Moreover,theinfluence

ofhardware archltecntreextendsbeyondjustthatoftheCPU. The differencebetween theASCII

and EBCDIC character sets indicates that the architecture of peripherals also bears significance.

The interactionand interdependenciesthatexistbetween allof thesecharacteristicssuggestthat

theinfluenceofhardwarearchitectureon theproblem ofdisparatedatarepresentationsisbroad.

1.2 Languages and Compilers

The differences in conditional expression evaluation that occur within the C and Ada

programming languages demonstrate the manner in which programming languages can contribute

to this problem. In all C implementations a conditional expression is true if it evaluates to any

.... non,zerOvalue; it is false flit eV_U_ z_ro precisely. Although the C programming language

does not explicitly provide a boolean type: most C programmers use an integer data type to

r_pre.sent these kinds of values. In Ada, however, a boolean type/s predefine_d as an enumerated

in package STANDARD: By:vi_e o fi_:_numerated form, the only requirement rela_ng to

the representation of its values is that the representation of false be numerically less than the

representation of true. Thus. each ind/vidual Acts comp/ler determines the exact na(za'e of how

boolean values are rep_ented. Since A_ treats conditional expressions as boolean values, the

evaluation of such exp_.ssions may clearly vary. In this respect, if the same application program

were to be implemented in two different programming languages, it is feasible for two values that

are intended to represent the "same" _ndition to be different. In fact, in certain cases it is more

precise to attribute this phenomenon to the differences between compiler implementations than to

the difference between programming language definitions. 2 Consequently, applications written in



!

4
=

the *same" programming language may experience miscommunication.
=.,.

1.3 Solving the Problem w

With regard to network heterogeneity, the disparate data representation problem is clear.

Since different host environments may possess different methods of representing data, the

interoperabilJty of these machines can not be achieved solely by the establishment of a refiable

connection. At some point during the communication, a transformation to and from each host

machine's native representation must be performed. This function could be carried out in one of

two ways: either (1) each host environment must be cognizant of the rep_on

characteristics of each other host environment with which it wishes to communicate, and

therefore each host must perform a potentially different transformation for every host-to-host

combination, or (2) a common method of data representation must be established whereupon each

host would be responsible for the single transformation between this standard method and its own

native representafiorL This latter approach, which is certainly the more desirable alternative,

captures the intent of the Abstract Syntax Notation One and the associated Basic Encoding Rules.
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2. ASN.1
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The ASN.1 standard [tl (ISO 8824) defines a language used to describe data values and data

types. It is typicany used by Application Layer protocols to define the types of their Application

Protocol Data Units (APDUs). For example, pmto_ls such as F'fle Transfer, Access, and

Management (FFAM) and Virtual Terminal (VT) use ASN.I. However, it is important to note

v

i

2. Micm,qoftCmmpilasue_zcharmavuluesusignedqums_iesbyctdmlc Consequently. all_vtluesm
sign extended duringtype convasimw l.auk,e C compilers, however, consider all c_ values to be unsigned
bydefaultaxidonotsignextend,

w
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L that the use of ASN.I is not necessarily restricted to the Application Layer.

could be used to define the Protocol Data Units (PDUs) of any layer.

5

Theoretically,it

--=

w

In the OSI nomenclature, ASN.1 provides the means to define an abstract syntax. To

unde_ this concept, it is useful to consider the term literally. In the formal, academic sense,

a syntax defines the legal sentential forms of a language. Within the context of

communications, one usually thinks of a syntax as defining the bit patterns used to represent data

flowing across a medium. An abstract syntax does not define these bit patterns, but rather it

establishes a framework whereupon these bit patterns, caUed a transfer syntax, can be created.

The manner in which they am created depends upon the encoding rules that arc applied.

--7
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2.1 Simple Types and Structured Types

There aretwo classesof ASN.I datatypesthatenablea userto describethe individualdata

unitsof a protocolsimple and structured.Simple types correspondto the primitive,atomic

typestypicallyfound withinmost programming languages.The ASN.I simple types include:

boolean.c, integers, bit strings, character strings, and various other forms. 3 Structured types are

identified by various ways in which existing ASN. I types may be logically grouped or logically

partitioned. ASN.I defines five methods of formulating these structured types:

I. given an ordered llst of existing types, a value can be formed as an ordered sequence of

value, one from each of the existing types; the coUeaion of all possible values obtained in

thisway is a new type;

.

of the official ASN.I standard.However, theirinclusionwith ISO 8824 is eminent.
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2. given a list of distinct existing types, a value can be formed as an unordered set of values,

one from each of the existing types; the collection of all possible values obtained in this

way is a new type;

3. given a single existing type, a value can be formed as a ordered sequence of or unordered

set of zero, one or more values of the existing type; the infinite colecdon of all possible

values obtained in this way is a new type;

!
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4. given a list of distinct types, a value can be chosen from any one of them; the set of all

possible values obtained in this way is a new type;

5. given a type, a new type can be formed as a subset of it by using some structure or order

relationship among the values;

These five methods correspond to the ASN. 1 structured types: sequence, set, sequence-of or

set-of, choice and subtypes, respectively.

2.2 Tags

Every data type that is defined using ASN.1 has an assigned taf_ The value of this tag is

either predefined by ASN.I implicitly or defined by the user of the notation explicitly. The

encoding rules always carry the tag of an ASN.1 type, whether explicit or implicit, with any

representation of a value of the type. The purpose of this tag is to enable the distinct type of the

represented value to be deduced during the decoding process. There are four classes of tags:

universal, application, context-specific, and private. Universal tags are assigned exclusively

by IS0 8824; application tags are assigned to _ by other standards; private tags axe never

assigned by ISO Standards or CCITr Recommendations and are therefore enterprise specific, and

context-specific tags may be assigned within any use of ASN.1 for the purpose disambiguafing

the type according to the context in which it is used.

U

W

m

w¢

g

a

!

u

m

i

W



E =

W

v

w

v

2.3 An ASN.1 Example

To familiarize ourselves with ASN. 1, let us consider a very simple, hypothetical set of data

communication requirements relating to the NASA Space Station. From these requirements, we

will define our own protocol using ASN. 1. -

--°
v

"iv

w

w
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One ofthe datacommunication requirementsof theSpace Stationmight involvethe transfer

of work requestsand the transferof correspondingresults.The schedulingof a particular

scientific experiment and the reporting0f ihe _results obtained from its exertion are a perfect

example of thiskindof informationexchange. The developement of a protocolthatmeets the

needs ofthiscommunication problem requiresthattwo PDUs be defined,Requestand Result.

We willcallthisnew applicationprotocoltheWork Management Protocol(WMP). In our

ASN.1 definition of WMP we will recognize the following requirements:

1. A work reque_ value should provide a textual description of the work to be performed.

2. A work request value should pn3vide an indication of when the work is to be attempted.

However, the specification of this element should be optionaL If the requesting entity

chooses to omit the specification of this value, then the work is to be performed at the

receivers convenience.

. A work m:luest value should pmvi_ an indication of who is to attempt the work; this will

entailthe specificationof zeroor more _viduals. 4 Fu_hcrmore, itisimportantthat

user be givea the ability to associate an authority hierarchy with the individuals that are

specified. Ia other words, the manner in which theae individuals are expressed should

4. In the case whe_ no individuals are specified, _ requested work may be carried out by whom ever is available at

the time iris $ched_ed to commence.
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reflecta "chainofcommand".

A resultvalueshouldindicatemore thanjustsuccessor failure.Itshouldalsoindicatethe

names of the individual(s)who attemptedto perform thetask.This may differfrom the

originalrequest.The contentsof a resultvalueshouldalsovary accordingtotheOUtcome.

Ifa work requestisexecutedsuccessfully,the time of completion shouldbe given.Ifa

request was not performed, an explanation of why it failed would be desirable.

b

m

5. Each work requestvalueshouldpossessan indicationofitsrelativeimportance(priority). m

6. A mechanism to associate each result value with its original request should be provided,

otherwise the request and result transfers would have to occur in lock.step.

Considering these requirements, the ASN.I definition of WMP miglit look as follows:

Wmp DEFINITIONS ::= BEGIN

Request ::= SET {
assigned-to Participants OPTIONAL,

start-I_ne UTCT'mae OPTIONAL,

id-number [0]INTEGER,

importance_ER {background(0),normal(D,urgent(2)},

descriptionIA5String

Result SEQUENCE {

Participants,
id-number INTF__ER,

CHOICE {

time-of-completionUTCTtme,

_n-Yor-f-allureIASString

}
}

Participants::=SEQUENCE OF IA5String

- listedinorderofdecreasingauthority

END

Hgure 1. An ASN.I Module

I
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The block of textin:Hgure I repre_nts a module definiti0n.The module construct

representstheASN. Iway inwhich relatedtypeand valuedefinitionsmay be logicallygrouped.

Every module definitionbeginswithas_tei_dii_oftheform:

<module name> DEFINITIONS ::--BEGIN

r_

and ends with the keyword END. For a module corresponding to an international standard, it is

recommended that its corresponding module name be of the form:

ISOxxxx'yyyy

where xxxx is the number of the international standard and yyyy is a suitable acronym.

L

m

m

w

Syntactically, the use of ASN.1 issomewhat flexible; the layout of the notation is not

considered significant. Likewise, indenting is permitted and in fact encouraged. Its proper use

will dramatically increase _ readab_of the notation. ASN.I/s, however, case sensitive. All

keywords such as DEFINrrIONS, BEGIN, END. SEQUENCE, and INTEGER must appear in

upper case. Cert,ain classes of identifiers must also begin with either upper or lower case letters

specifically. For example, a module name must always begin with an upper case letter, all of its

subsequent letters may be expressed in either upper or lower case, and hyphens may appear

between any two.

This particularmodule definition consistsof threetype assignments; each definesa new

ASN.I data type and establishes a type reference (or nmne) that can be used to designate the

type. All type references must begin with an upper case le.aer. The first type assignment defines

the type reference Request as a SET of three elements. The second and third assignments define

the Result type reference and Participants type reference as a SEQUENCE and a SEQUENCE

OF, respectively.

The ASN.1 sequence is a constructor notation used to model an ordered collection of
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variables whose number is known and modest and whose types may differ. To think of this in

programming language terms, a sequence data type may be viewed as the ASN.1 equivalent of a

Pascal record or a structure declaration in C. An ASN. 1 set is identical to a sequence except for

the property that the order of the elements within a set is not considered significant. 5 The ASN. 1

sequence-of type is identical to the sequence type except for the fact that all of the elements of a

sequence-of must be oftbe same type and the number of these elements is unbounded.

W

W

3. BER
m
U

The Basic Encoding Rules standard t21 (ISO 8825) defines a specific technique for encoding

data. To use our previous OSI terminology, it defines a mapping from the abstract syntax,

def'med by ASN.I, into the transfer syntax. A BER encoding is represented as a sequence of

octets. These octets are partitioned into 3-tuples, indicated in Figure 2:

IDENTIFIER LENGTH CONTENTS

t

IIw

W

g

Format-

The identifier octet(s) contain information regarding the type and form of the encoded data

value. A primitive form indicates that the contents octets contain a direct representation of

the data value. A constructed form indicates _ the _ octets contain another embedded

encoding. The length octet(s) determine the end of an encoding. They indicate how many

contents octets represent _ encoded data, or, if that this number is unknown, then they indicate

5. We ktve_ _aeNt-type in _ example-to demom_ its existence within ASN.1 m'tdm_ attentim'tto the
imporumee of explicit tagging. Note that due to the hidden inetF_:_enc_ associated with the decoding of set types

in genend, which is discussed liter, we do not recommead that they _ _

m
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that the contents octets are delimited by a reserved bit pattern called an end of contents (EOC)

sequence. The contents octets contain a direct representation of the data value or another nested

identifier-length-contents sequence.

3.0.1 The Identifier Octet(s)

The identifier octets denote the tag and form of an encoded data value. An identifier octet

sequence cart assume two formats. Which format to use in a given case depends upon the

magnitude of the tag number. If the tag number falls within the range 0..30 inclusively, then the

corresponding binary value may be placed within a five bit field, thus enabling the entire

identifier information to fit into one octet. If, on the other hand, the tag number exceeds 30,

additional octets must be used. Figure 24 indicates the layout of the single octet format.

f
00 = UNIV_SAL

01 = APPLICATION

I0= CONTEXT-SPECIFIC

II= PRIVATB

8 7 6 5 4 3 2 1

1 = CONSTRUCTED

_$ WITHIN

THE RANGE 0..30

Figure 3. Identifier Octet (low tagnumber)

As illusWated, three information fields are contained within the identifier octet. The meaning

of each is as follows:

1. Class:

2. Form:

Bits 8-7 indicate the tag class of the encoded data value.

Bit 6 indicates whether the encoded value is primitive or constructed. A primitive

form indicatesthatthecontentsoctetscontaina directrepresentationof thedatavalue.A
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constructed form indicates that contents octets are the complete encoding of another data

value. In other words, the subsequent contents octets contain embedded identifier-length-

contents sequences.

m

. Tag Number: For tag numbers falling within the range 0 to 30 inclusive, bits 5-1 of the

leading (and only) octet designate this value. For tag numbers greater than 30, bits 5

through 1 contain the value I I 111. This reserved bit pattern indicates that an extension of

additional octets is required to hold the tag number. Bits 7-1 of each subsequent octet

whose 8 bit is set to 1, up to and including the first octet whose 8 bit is set to zero, will be

concatenated to form the binary tag number value. Figure 25 graphically illustrates this.

LEADING OCIET < SUBSEQUENT OCTETS

87 1 87 1

I cl_sl p/c 1111111 Ill I ill I

/l
TAG NUMBER = I l l :-'-- I

Figure 4. Identifier Octet (extended tag number)

87

..... I01

3.0.2 The Len_h Octet(s) ...........

The purpose of the length octets is to determine the end of an encoding. They explicitly

indicate how many ec_tents octets have been used in the encoding, or, altema_vely, they signify

that this length is unknown but deducible. In the explicit ease, they contain the binary value

corresponding to the exact number of contents octets that follow. In the case where this number

is unknown, they contain a reserved bit paty,em indicating that the contents octets are delimited

with a special EOC sequence. An EOC sequence consists of two oaets whose binary values are

zero.
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Like the identifier ooet(s), the length octet(s) may be expzessed in more than one format: the

short form, the long form, and the indefinite form. The use of a specific format is determined by

three conditions: the form of the encoding_(p_ifive _or constructed), whether the number of

contents octets is known in advance and the magnitude of this number. Primitive encodings are

restricted from using the indefinite form since this would preclude the appearance of two

consecutive "zero octets" within their contents octets. However in the case of a constructed type,

the EOC octets always fall at the point in the encoding where the next identifier octet would be.

Since zero is not a valid identifier octet (the UNIVERSAL 0 tag does not exist) there is no

ambiguity. The choice of which format to use with constructed encodings is left to the user's

discretion. Figure 26 illustrates the layout of these three forms.
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SHORT FORM

7

Number of contents

W

w

8 7

'1

Leading Octet

LONG FORM

Number of length octets

Number of contentsoc[etsffi

l 8

[

SubsequentOctets

I

I .....I
/ / \

I

J

I I .....I I

i

g

INDEFINITE FORM

8 7 1

_1_0 0 0 0 0 0 0 I

Figure S. LengthOctetForms: short, long and indefinite

In the short form, the number of octets that the length information occupies is one. Bit 8 is

requiredtobe zero, and bits 7-1 contain the number of contents octets. Obviously, this form may

be used only when the number of contents octets is less than or equal to 127. In the long form,

the number of octets that the length information occupies can be anywhere from 2 to 127. In the

leadingoctet,bit8 isalwayssetto I,and bits7-I indicatethenumber ofsubsequentlengthoctets

required.Since the bitpanem 11111111 has been reservedforpossiblefutureextension,the

maximum number of subsequentoctetsis 126. As illustratedin Figure26, tbesesubsequent

octetsareconcatenatedtoform thebinaryvalueindicatingthe _ber ofcontentsoctetsused in

the encoding. Finally,the indefiniteform requiresonly one oaet containingthe reservedbit
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L pattern indicated above. In relation to the other formats, this bit pattern represents the long form

with zero subsequentlengthoctets.From a logicalperspective, this makes sense.No need for

subsequent length octets exists since the contents octets ate delimited by an EOC sequence.

r_

m
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m

w
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3.0.3 The Contents Octet(s)

In a primitive encoding, the data value is directly represented by the contents octets. This

may not, and in many instances will not,_be exactly the same as the original native_ representation,

depending on the host environment, the data type, and the magnitude of the value itseLf. For

example, ISO 8825 specifies that negative integers are always in two's complement form and that

the character values of an IASString are in ASCIL 6 In a constructed encoding, the contents octets

do not contain a direct representation of the data value, but instead contain timber encodings.

These nested encodings can in turn be co_cted if necessary.

3.1 A BER Example

4. Building an ASN.1 Compiler

The purpose of an ASH.1 compiler isto automate the generation of logic required to encode

and decode PDUs according to the transfer syntax, in this case the transfer syntaxis BER. The

relative benefit of an ASN.I compiler is directly pcoportional to the stability of the protocol at

hand. For mature protocols such as VT and FTAM, the likelihood of significant modifications is

very small. Therefore, the need for an ASN.i compiler is not a compelling issue. However, in an

environment where a protocol is evolving and changing, an ASN.I compiler offers tremendous

6. Mmy other chat_tics of ISO 8825 also influence this change in repre_ntation. For example, integers _re

tlway_ encoded in the minimal number of octets, etc.
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benefit.

Figure 2 depicts how an ASH.1 compiler might be used within an implementation. The

source code processed by the compiler is the actual ASH.1 description of the data types of an

Application Layer protocol. The object code consists of a set of encode and decode routines

(Wmp.c 7 ), a run-time library (ruat/me), and an "include" file containing the corresponding APDU

programming language declarations (Wmp.h). The encode, decode and run-time routines are

subsequently embedded within _ Presentation Layer implementation. The APDU declarations

file is referenced within both the Application and the Presentation Layers.

DEVELOPMENT TIME

COMPILER

f--_ WmpJl [":'"'I ........

'"i.......

°°* •

| °°°o

| "°°

!

!

!

!

°°° ***_°o.°°o°

OSI STACK

°°°°_

Application

|.

_tation

w

W

IIW

I

w

I

m

w

W

lIW

W

Figure 6. Using an ASN.I Compiler

always coincide wkh the mmm of _lm ASN.I module. ..........
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4.1 Physical Specifications

The compiler is written in the C programming language and is approximately 5000 lines in

length. Its front end was developed using the Unix utilities Lex and Yacc. The compiler accepts

an ASN.I module definition as input and generates two C files as output: an include file

containing the C declarations of the APDU's, and a code file containing the two C functions

encode and decode. A run-time library also provides a melange of general purpose routines.

Unfortunately, the compiler does not support the entire ASN.I standard; the macro notation,

character sets other than IASStrings, useful types, and extemal references are not presently

implemented.

I
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4.2 Generating Declarations

To createa transfersyntax,the ASN.I compilerdepends upon a preciseknowledge of the

APDU representations.Itisthereforeappropriatethatthecompilerassumes theresponsibilityof

creatingthesedeclarationson behalfof the ApplicationLayer. This providesa morn robust

implementationsinceitensuresthatthe ASN. 1 dam typedefinitionswillbe always consistent

with the actualAPDU representations.Clearlythisis desirableconsideringthatthe mladvc

benefitprovided by an ASN.1 compiler hingesupon itsabilityto minimize the effectsthat

modificationstotheabstma syntaxmay cause.The reader'sunderstandingofthismapping from

theASN.I definitionstodm APDU declarationsismost important;itrepresentsthe firstbridge

between an ASN. Idefinitionand a working_nplementadon.

Assuming thatthereaderisfamiliarwiththeC programming language,theclearestmeans of

describingthisaspectof the compiler is through an example. Let us examine the APDU

declarationsgeneratedfrom the module definitionof WMP thatappearsin Figure I. These are

shown inFigure4.
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typedef struct {
hat no_of_elems;

char **elems;

} Participants_alxlu;

typede f char *UTCTime_apdu;

typedefstruct{
Participants_apdu_unnamed_l;

hat id_number,

struct {
enum {time_of.completion,

reason, for failure} which_choice;

union {
UTCTime_apdu time_of_completion;

char*reason for_failure;

}choice;

} _unnamed_2;
} Result_apdu;

typedef struct {
Participants_apdu *assignedto;

UTCTime_apdu start_time;
int id_number;

hat im_e¢;

char *description;

} Request_apdu;

typedef struet {

enum {UTCTtme,

Participants, _:

Result,

Request}which..apdu;
union{

uTcr'tme_apdu_tme;
Participants_apduParticipants;

ResulLapdu Result;

RequesLapdu Request;

}apdu;
}Wmp_apdu;

typedefstruct{
intlength;
byte*value;

}Wmp_encoding;

Figure 7. Declarationsof WMP APDU's
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Although the above declarations do not represent the entire contents of the declarations file, this

is sufficient to illustrate the important facts.
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Each type assignment within an ASN.i module definition produces a corresponding C

typedef declaration. The Request data type, for instance, is represented by the typedef structure

Request apdu. As one would expecL it contains three members, each corresponding to one of the

three elements within the original ASN. 1 data type definition. Typedef declarations for the data

types Date and Result also appear. ALl of these typedef declarations are subsequently referenced

as members of a union that is embedded within the Wmp_apdu structure. Wrap apdu is a variant

record that represents any APDU of our WIMP protocol. Each of its variants corresponds to one

of the data types defined within the original ASN. 1 module. The whichapdu member identifies

the type that is currently being represented by the union.

There are two subde but important aspects of the above declarations that should be noted.

FirsL the order of these t3_edef declarations does not correspond to the original ASN. 1 definition.

This is _use forward references, w_e permitted within ASN.1, are not permitted within C.

Consequently, the declaration of Date_apdu must precede the declaration of Request_.apdu.

Second, notice that the name of the second member of the Requestapdu structure is

unnamed 1. Since the second element of the original ASN.I definition of the Request data type

was not named, the corresponding C name must be supplied by the compiler itself. This

illustrates why the use of named types within an ASN.1 element list enables the compiler to

generatemore readable C code.

4.3 Generating Code

The compiler generates two routines which are to be subsequently integrated into the

Presentation Layer. Since actual C code Of each is very defftIed it will not be presented. The
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reader may refer to Appendix A where a complete listing of the code generated for this particular

example is given. Within this section the logical operation of each function is discussed in a very

general sense. The corresponding function declarations are given below.

encode Wrap (decoding, encoding)

Wmp_apdu *decoding;,

Wrap_encoding *encoding;

decode_Wmp (encoding, decoding)

byte *encoding;,

Wmp_apdu *decoding;

Figure 8. The Encoding and Dec._ing Functions

4.3.1 Encoding

The encoding function accepts the decoding argument as input and produces the encoding

argument as output. The encoding process occurs in two phases. The purpose of the first phases

is to calculate all of the length octet values of the encoding to be generated and to allocate an

encoding buffer of the proper size. This task is performed by examining the contents of each

value within the given APDU and making the appropriate run-time calls. These computed length

Values are _ into a _ie which alxeady contains the_type-octet Values for _ _ that has

been defined in the ASN.1 module. These values are subsequently extracted from this table in the

later phase as the actual encoding is generated. The fact that the inner length octets of an ASN.1

encoding dete_ the values of the outer length octets explains why this length calculation

phase is necessary. In other words, it is not possible to build an encoding from the inside out

since the starting offset within the encoding buffer is unknown. The second phase focuses upon

building the actual encoding. The type and length values from the previo_iy_u_lt:tabte - are

inserted into the ew.odin" g buffer _ the actual values of the APDU are passed to the appropriate

run-time routines which insert the contents octet values.
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4.3.2 Decoding

The decoding function accepts the encoding argument as an input and produces the decoding

argument as output. The decoding process is controlled by a finite state machine, implemented as

a state table. Each entry of the state table contains an expected type octet value and a set of

transitions. The finite state table for the Wmp module of Figure 10 is given below:
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struct decode_state {

slaxtct {
class c;

form f,

int id;

} type;
int match_state;

int diff'_state;

int end_state;
boolean matched

} Wmp_fsm[] = {

};

{ {universal, primitive, 22}, -1, 1, 0, false},

{ {universal, primitive, 2}, -1, 2, 0, false},

{ {universal, constructed, 16}, 3, -2, 0, false},

{ {universal, primitive, 22}, 4, -2, 0, false},

{ {universal, primitive, 22}, 5, -2, 0, false},

( {universal, primitive, 22}, -1, -2, 0, false}

Figure 9. The Decoding Finite State Machine

r

The match_state element rep_ the transition that is to be made when the cutrer_ type oc_t

"matches the type octet of the given state. As om might guess, the d//Zstate element r_rese_

the transition that is to be made when these two type octets differ. The end_state is necessary

when the value being decoded requires that a set of states be executed an undctemfinable number

of times; this is the case when the value is a set type, a set-of type, a sequence-of type, or a

recursive type.

The actual decoding process consists of a large switch statement that is itetatively executed

until either the decoding is successfully completed, or the decoding fails.
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4.4 The Run-Time Library

Most of the "bit-level" details of the encoding and decoding process are contained in the run-

time library. This library consists of a set of C routines that perform very specific functions. The

nature of these functions does not vary with respect to the ASN. 1 definition; that is, the work

performed by these run-time routines is applicable to the encoding and decoding of almost all

ASN. 1 definitions. An overview of uhese run-time routines is given below.

The ASN.I compiler's ran-time library consists of the following routines:

° Dectyplen • This functiondecodes the type and lengthoctetsof an an encoding. It

supportsboththefivebitform aswellas theextendedform of thetype octet(s)aswellas

theshort,long,and indefiniteforms oflengthoctet(s).
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° Enc_typlen • This function decodes the type and length octets of an encoding. It supports

both the five bit form as well as the extended form of the type ooet(s) as well as the short,

long, and indefinite forms of length octet(s).

N

3. Len_len • This function determines the length of a length octet value. In other words, it

determineshow many lengthoctetsarerequiredtohold agivenlengthvalue.'l'nisroutine

iscalledby theencoding routinewhen itiscomputing thelengthof the encoding.

4. Int /en : This function determines the number of commts octets _ to encode a

given integer value.

, Eric int" This function inserts the encoding of an integer value into the contents octet(s) of

an encoding. In accordance with clause 8.2 of ISO 8825, the number of contents octets

produced is always the minimum required to represent the integer value.

6. Dec_int" This function returns the integer value represented by the contents octet(s) of an

encoding.

W

w

=
W

U



23

v

u

- =

W

7. Enc bool" This function inserts the encoding of a boolean value into the contents octet(s)

of an encoding.

..... 8' .... DeC_bool: This-function rettirris_$e_i=e_':_/_ue reptesehted:byth6 _nts _(s) of

an encoding. A boolean value in C is declared as an unsigned char.

9. Enc /aSstr • This function inserts the encoding of a IASString value into the contents

octet(s) of an encoding.

10. Dec iaSstr" This function returns the IA5String value represented by the contents octet(s)

of an encoding.

11. Enc_bstr : This function inserts the en_gof a BIT STRING value into the contents

octet(s) of an encoding.

12. Dec bstr • This function returns the BIT STRING value represented by the contents

octet(s) of an encoding.

14.

13. Enc ostr" This function inserts the encoding of a OCTET STRING value into the contents

15.

16.

octet(s)ofanencoding.

Dec ostr : Tills fimctiort returns the OCTET STR/NG Value _presented by _ contents

octet(s) of an encoding.

Ob]__l_len • Tt_ fm_on calculates the number of contents octets reqmn_! to enoxle a

given OBJECT IDENTIFIER value.

Eric ostr : This function inserts the encoding of a OBJECT IDENTIFIER value into the

contents octet(s) of an encoding.

17. Dec ostr : This function returns the OBJECT IDENTWIER value represented by the

contents octet(s) of an encoding.
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4.5 Performance

As a more substantial test, the F-INITIALIZE-request PDU of the FTAM Application

protocol [3] was given to the ASN.1 compiler. With the exception of converting two Graphic

String data types to IASStrings and modifying one tag, s the FTAM definition used to conduct this

performance measurement should represent the overhead one would expect to encounter in

reality. Although the other PDUs of FTAM were reduced to integer data types, their explicit tags

were left intact. Since these types correspond to transitions within the decoding finite state

machine that are never be made, the reduction of these types is irrelevant to the mea._md

performance.
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Given the definition described a-b6ve, the AS-N.1 compiler gene_ a declaration file of 194

lines and a C code f'de of 2849 lines. Running on a Sun 3/140 workstation, the 6me to encode

F-INiTIALi_:request PDU was approximately 5.11 milliseconds, and-the time to decode was

approximately 4.97 milliseconds. 9
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5. Conclusions

Through the process of building the compiler many insights into the ASN. 1 and BER were

obtained. This section presents these observations in an effort to illum'_ rile answer to the

question of how well ISO 8824 and ISO 8825 solve the problem of network heterogeneity. When

approaching _ issue it is essential that one bear in mind the kinds of characteristics that

determine the context that makes such an evaluation possible: efficiency, clarity, applicability,

$. The explicit tal of the Pmtocol-Vmion d_a type was changed from [0] m [9]. This was necesr_/due m m

9. T'unings wm-oTmdned wing the Unix _ commsnd whereuIxm the reported usa end sysmn times were
combined. The Sunworkstationwas dedicated to s single usa when these mess_anents were taken.
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and easeofimplementation
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5.1 Ambiguity
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One of the more surprising discoveries that resulted from our experience with the ASN. 1

standard is the fact that the concept of ambiguity is not well defined. In the introduction of ISO

8824 a foomote indirectly addresses this issue in the context of tagging. It states:

Encoding rules always carry the tag of the type, explicitly or implicitly, with an),

representation of a value of the type. The restrictions placed on the use of the

notation are designed to ensure that the tag is sufficient to unambiguously

determine the actual type, provided the applicable type defmitiom are available.

The reference to the tag (singular) in the above statement suggests that if ever a specific tag value

indicates more than one type in any given context, then the ASN.I definition is ambiguous. If

this is indeed the co_ct interpretation, then the logic required to decode an encoding is LR(0). l0

This coincides with the finite state machine approach that is used to perform the decoding within

our ASN.1 compiler. Yet, this same interpretation of ambiguity also suggests that the official

ASN. 1 definition of P-TAM is ambiguous!

Looking at the partialdefinition of FTAM thatappearsinAppendix B, notice that the data

type PDU is a choice consisting of three ur_gged alternatives. Since these elements do not

possess explicit tags, an encoding of this data type is identical to the encoding of the selected

alternative. Furtlmrmore, notice that the FTAM-Regime-PDU alternative of the PDU data type is

also a choice whose first element, F-INmALIZE-requeat, is assigned the tag context 0. This

means that the first tag of an encoding of the F-INITIALIZE-request PDU will always be context

0. Now note that the Protocol-Version data type that appears later in the module also possesses

10. OtherASN.1 compilersreferto decoding at "patting'.
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the explicit tag context 0. Since the definition of this type appears at the outermost lexical level,

as does the definition of PDU, both of these data types represent potential PDUs. Consequently,

when the generated FTAM decoding routine encounters a context 0 tag as the first type octet of

an encoding, it has no way of knowing whether or not the value being represented is a Protocol-
=o

Version PDU or a F-INITIALIZE-request PDU. In this particular case, a two tag lookahead is

necessary to disambiguate the encoding.

wp
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From the name PDU it is natural to assume that this data type is the root of the FTAM

definitions and that all FTAM PDU's originate from this type. This heuristic could therefore be

used to resolve this particular ambiguity. However, this is clearly an assumption since there is no

construct of ASN. 1 being used to indicate that this condition holds true. In as much as forward

references are allowed in the notation, it is not possible to make this assumption based on the

mere fact that this definition appears first. Consequently, all data types that appear at the

outermost lexical level of a module must be considered PDUs in their entirety and the ambiguity

remains. In fact. since the elements of the PDU data type do not possess explicit tags, the absence

or presence of this type definition does not influence the formulated eneodin_ in any way; in

other words, this data type is extraneous with respect to how an FTAM encoding is built and

interpreted.

It is true that the FTAM standard does not intend that the Protocol-Version data type be

considered a PDU by itself. In reality it is a su.pportingtype definition that is referenced as a

named type within other PDU definitions. Yet, the coml_er has no means of making this

distinction based on the notation itselfJ t Therefore, every type definition that is not lexicatly
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11. Using the hem_lic _ my data type mentioned wi0ain tno_ter type b n_e,_ily • mpporfing type would
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embedded within mother type definition must be treated as a PDU. As a general approach to the

issue of ambiguity, requiring more than a single tag Iookahead would require any ASN.I

compiler to generate an LR(k) implementation. This would almost certainly prevent the

realization of efficient implementations.

The ASN. 1 definition of what constitutes an ambiguous instance of the notation requires

clarification.

5.2 Library Management

The unrestricted manner in Which _ or value definitions within other ASN. I modules may

be referenced presents another area of the ASN. I standard that appears to be inadequately

def'med. When an ASN.I user wishes to reference a type or value that has been defined within

mother module the External Reference construct may be used. As explained in section 3,4.3, an

external reference consists of the specification of the module name where the definition appears

and the actual name of the desired type or value. A proposal to enable the ASN. 1 user to exert

explicit control over the importing and exporting of definitions is currently under consideration in

the pending draft addendum. However, a potential problem which has been overlooked by the

definition of this external referencing capability involves the potential for muuullly dependent

module definitions. Consider the following modules:
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Module-A DEFINTrIONS ::= BEGIN

Type-Al ::- BIT SWR/NG

Type-A2 ::=SEQUENCE {

Module-B.Type-B I

END

Module-B DEFINITIONS ::= BEGIN

Type-Bl ::= OCTET STRING

Type-B2 ::= SEQUENCE {

Module-A.Type-A I

}
END

Figure I0. Mutually Dependent Modules

In this example, two ASN. 1 modules are mutually dependent since each references a data type

that is defined within the other, m This potential for mutual dependencies requires that an ASN. 1

compiler generate p_y complete intermediate _e files and makes the automated processing

of these definitions exu'emely difficult. This problem is am'ibutable to the absence of a well

defined library management concept within ISO 8824.
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5.2.1 Linear Elaboration

The problem of mutually dependent modules can be solved if ISO 8824 were to establish a

requirement of linear elaboration. [4l The Ada programming language effectively utilizes this

concept to prevent the possibility of mutual dependencies among compilation units. Elaboration

is defined as the process by which an entity is brought into existence. According to the definition

of Ada, this marks the point at which the name of a declarative item is bound to its type. The

name of an Ada entity may not be used before the elaboration of the declarative item that declares

this entity takes place. With respect to compilation units, the concept of linear elaboration

12. Mutually_ modules _@esr in d_ X.500 sezi_ of _Jxlards.
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requires that a noncircular ordering of all compilation units referenced, either directly or

indirectly,by a given program must exist.Ifno such orderingcan be found,the program is

illegal.

v

F

This same requirementcouldbe appliedto the ASN. I standardto preventthepossibilityof

mutual dependencies.

5.2.2 Useful Types

A set of predefined data types, called useful types, is specified in section three of ISO 8824.

Four data types are defin_:_C-eneraliz_ "_e, Universal _e,_e'Ex_m_ type-,afid _ object

Descriptor type. One problem associated with the manner in which these types are defined

concerns their disposition relative to the reSt0f the standard. Specifically, the means through

which their names are made visible to all module definitions is not clear. Hence, their

relationship to the ASN.I standard itself is unclear. The development of a library concept would

alsoservetosolidifythedispositionof thesetypes. : ......

Like Ada's package _ANDARD,'a p_cfmed m_de of these useful types should be

defined. This would consequently allow any ASN.1 module to explicitly import these types

whenever their use is requited. Alternatively, this importing of these types could be defined as

implicit as is the case with package STANDARD. In any regard, the disposition of these types as

a predefined envitenment would be clarified and therefore strengthened if a module were to be

formally defined.

5.3 Efficiency versus Generality

The developmeat of any standard seems to entail a perpetual series of compromises. Issues

concerning generality and efficiency are typically in conflict and a balance of the two is often the
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bestthatcan be achieved.For the most part.ASN. I and BER adequatelystrikesthisbalance.

However, thereare particularinstanceswhere the issueof generalityhas been favoredover

considerations of efficiency to a questionable degree. I

5.3.1 Encoding Integers

As statedin section3.3.6.1,ISO 8825 requiresthatallintegervaluesbe encoding in a

minimum number of octets. This requirement prohibits integer encodings from being

unnecessarily large and prevents the pathological case where an integer value may be transferred

with an arbitrarily number of leading octets that contain either all zeros or all ones. Nonetheless,

the cost of this decision is expensive with respect to efficiency. It has been shown that the

encoding and decoding of an ASN.1 integer value, in contrast to a simple memory copying

technique,decreasestheu_'tsferrateby a fa_ctorthat=rangesfrom 5 to20 dependingupon thehost

system.[51Moreover, in thissame setof experimentsitwas shown thata fixedlengthapproach

reducedtheencodingtimeby a factorof5-6.

To support the requirement of integer encoding minimality the run-time system must perform

a series of checks to determine the size of each integer value. This can be accompLished through

successive range checks or successive logical operations on the leading byte of the value.

However, regardless Of _ch approach is=used, the process is unnecessarily slow. Requiring

integers to be encoded in a minimum number of bytes is ill-advised with respect to performance.
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5.32. Obj_Zdentlfiers

The encoding and decoding of object identifier values is an unnecessarily inefficient process.

Comprised of a series of numeric values, called componem values, an object identifier is encoded

by represen-fl_ng-_chcomponent value as a seriesof seven-bit quantities.These seven-bit

quantities are concatenated to form each component. The leading bit of each contents octet is
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used to demarcate the boundaries of these component values. To further contribute to this

inefficiency, the first two components of any object are handled as a special case. Since the value

of the first component is restricted to the range 0..2, the encoding of the first two components

may be represented using the equation: $ 40(X) -- + - Y $ where X denotes the value of the first

component and Y denotes the value of the second. This requires that the runtime routine that

performs this encoding and decoding must use its knowledge of the object identifier tree structure

to determine the values of X and Y. The application of this knowledge is expensive.

The use of seven-bit quantities is not desirable since bit masking or arithmetic shifting is

always necessary to isolate the value. Furthermore, it is not cleat whether a savings of one octet

warrants the computationally expensive combination of the first two component values.

v 5.4 Explicit Tagging

- =

= =
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From a philosophical pet_:m_ve the concept of explicit tagging seems erroneous; it thrusts

the responsibility of preventing ambiguity onto the user. It is certainly possible to estabLish a

standard, canonical ordering of the type definitions within any module and to determine tag

values from this ordering. Consequently, a compiler could potentially generate these tags and

assume this responsibility instead of the user. As long as the generated tags ate predictable,

economical, and unique, _ users needs would be met. For example, a simple top down, lei_ to

right sequential numbering scheme would fulfill these three requirements.

If such a sequential tagging generation algorithm were adopted, tag values would not be

reusable in the case of mutually exclusive contexts. Therefore, _ point at whic_extended tag

values ate necessary might arrive sooner than before and would cause the average length of an

encoding to increase. However, this point would depend on the extent of the mutually exclusive

contexts: note that the tag class values would no longer be required under this new Scheme and,
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therefore,thecapacityofthetagidfieldcouldbe extendedfrom 0..30to0_126.

Clearly it is more desirable to have these tags generated in an automated manner since the

issue of ambiguity can be subtle and error-prone.

5.5 Sets

The only difference between the ASN.I sequence type and the ASN.1 set type is that the

order of elements within a set is not considered significant. Therefore, opting to define a data type

as a set ratherthan a sequence is lessrestrictive.There is an intuitivetendency to equate

restrictiveness with inefficiency; after all, removing this restriction appears to allow the elements

to be reordered during transfer if this presents itself as a more efficient alternative. However, this

freedom is not more efficient. In fact the decoding of a set value is far less efficient than a

sequence due to this unpredictable ordering and, ironically, it is extremely unlikely that the order

that these elements are received will ever differ from the order that appears in the original

definition. 13
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The elements of a set value are decoding by a cycle of states within the decoding finite state

machine. This cycleisexecuteduntilitisdeterminedthatthe end of the encoding has been

reached.As each elementisencountereda booleanflagwithinthedecoding statetable,matched,

is checked and set to indicate that this decoding has occurred. After the appropriate runfime

routineperformstheactualdecoding,acheck ismade todetermineiftheend of theencoding has

been reached.Ifthischeck succeeds,thenthematched flagof each elementmust be re-checked

inthe statetableto ensurethatalltheelementvalueswhich were notmarked as optionalor had
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13.The Seaion Layer does net provide the capability of _g _ of • single PDU. It is therefore the
exclusive responsibility of the ASN.I com_ to perform this nsordemg. Yet. it is doulxfal that c_ces
existwhere this would be desirable.
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not been assigned a default value have been represented within the encoding. If all of these

checks are successful the decoding terminates successfully.

In contrast, the decoding of a sequence value is a far less time consuming activity. Since the

order of elements is significant, decoding is simply a matter of checking each tag as it is

encountered to ensure that it matches that which is expected. If this tag check ever fails, the

decoding is terminated as a failure. Note that the end of the encoding does not require special

processing and there is no need for the matched flag to be set or checked.

The inclusion of set types in ISO 8824 appears esoteric and predicated on the need for

completeness. Their use within an actual implementation can be deceptive where efficiency is

concerned.

w

5.6 Macros

The Macro Notation enables a user to alter the grammar of the ASH. 1 language "on the fly".

As such, the existence of macros makes developing a conformant implementation inordinately

difficult Although certain programming languages are capable of solving this class of

problem, t4 these languages do not possess the efficiency to make their use advisable in a network

implementation. Hence, the current definition of macros poses an obstacle.

Philosophically, the pn'.sence of a macro notation is inappropriate. As a descriptive

mechanism that defines the informational content of an application protocol, one of ASN.I's

most valuable benefits is the concise and accurate means of human communication that it

represents. In this respect, it is critical that its form remain standard. This enables ASN. ! to

14. pro_ ltngutg_ like Icon or l/$P
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effectively bridge the gap betwe_l the precise communication of computers and the imprecise

communication of human beings.

With the_ of macros, t_ ASN.1 language can assume an amorphic form that is determined

by the personal tastes of the ASN. 1 writer. TI_ can only serve to reduce the overall quality of

the notation itself.
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